OncoImmunin, Inc. # CyToxiLux® PLUS! Updated 08/31/09 ### Overview CyToxiLux® PLUS! is OncoImmunin, Inc.'s single cell-based fluorogenic cytotoxicity kit for the measurement of downstream caspase, specifically caspase 6, activity in live target cells following the successful delivery of a lethal hit by cytotoxic lymphocytes. Whereas previous CyToxiLux® kits were formulated for 50 assays with single (488 nm) or dual (488 and 633 nm) laser flow cytometers, the current CyToxiLux® PLUS! kit is formulated for 80 assays with dual laser cytometry capability. (For single laser systems, please contact OncoImmunin, Inc. directly.) CyToxiLux® PLUS! is similar to GranToxiLux® PLUS! and PanToxiLux™, OncoImmunin, Inc.'s other single cell cytotoxicity assay kits, with the difference being the cell permeable, fluorogenic substrate: CyToxiLux® PLUS! is designed to detect downstream caspase activity only, GranToxiLux® PLUS! granzyme B activity, and PanToxiLux™ detects both granzyme B and an upstream caspase, specifically caspase 8, activity. As with the other two kits, CyToxiLux® PLUS! can be used for selection of antibodies operating via an antibody-dependent cellular cytotoxicity (ADCC) mechanism in both low and high throughput screening (HTS) modes. Advantages of CyToxiLux®, GranToxiLux®, and PanToxiLux™ over other cytotoxicity assays, e.g., ⁵¹Cr release, LDH release, and PI, include: (1) cytotoxicity is measured as a fundamental biochemical pathway leading to cell death (cleavage of a cell permeable fluorogenic substrate) rather than merely as the loss of plasma membrane permeability and its sequelae, (2) sensitivity is enhanced such that relatively weak CTL responses against subdominant epitopes are detectable (3) rapidity (Effector:Target coincubation times between 0.3 and 2 hours), (4) measurement of cell death can be carried out exclusively in target cell populations by flow cytometry or fluorescence microscopy, and (5) when combined with immunophenotypic analyses and multiparameter flow cytometry, cytotoxic lymphocyte-mediated killing of primary host target cells as well as the physiology and fate of effector cells can be directly visualized and monitored. Target cells are fluorescently labeled (red) and then coincubated with cytotoxic effector cells in the presence of a fluorogenic granzyme B substrate. Following incubation and washing, samples may be analyzed by flow cytometry. Cleavage of the substrate results in increased green fluorescence in dying cells. Real-time imaging can also be carried out with confocal microscopy. # Please read this entire protocol before commencing assay! Components supplied in CyToxiLux® kit (sufficient for 80 assays) Vial CS (4 vials) = Caspase Substrate solution Vial TFL4 (1 vial) = Target cell marker for use with dual laser instruments TFL dilution medium (1 small Eppendorf tube) = Resuspension medium For Vial TFL4 Components supplied by user Effector cells Target cells Wash Buffer bottle (1 bottle) In order to eliminate target cells that have died prior to addition of effector cells, e.g., due to a freeze/thaw cycle, please contact OncoImmunin, Inc. Please note: labeling of cell surfaces with fluorescent probes is **not** recommended as this may interfere with effector-target interactions. Format: The assay may be performed using either 96-well plates or polypropylene microcentrifuge tubes. **Reconstitution of TFL4:** Add 25 μ l from the TFL dilution medium tube to **Vial TFL4.** (Once reconstituted, **TFL4** should be stored at -20° C.) **Medium T** = Medium for labeling target cells. 1 μ l from reconstituted TFL4 is added to the medium in which target cells had been grown or to a physiologic buffer such as phosphate buffered saline (PBS). Please note: most cells load more efficiently in PBS or in a medium free of serum. If 10% serum is included, the recommended TFL4 dilution is 1:1000 whereas for serum-free buffers, the Target cell marker is typically used at 1:3000; however, further dilution may be superior. Optimal TFL4 concentrations should be determined for individual target cell types as 1:1000 for serum-containing and 1:3000 for serum-free media are merely suggested starting points. **Washing** is defined as addition of the indicated volume of medium/buffer followed by centrifugation and then careful removal of all liquid from tubes or flicking followed by light tamping of plates. Resuspension of pellets should be carried out with gentle pipetting and/or tapping of tubes with finger. **DO NOT VORTEX**. V: 301-987-7881 F: 301-987-7882 #### **Protocol** # **Preparation of Target cells** - Suspend Target cells (suspension or trypsinized adherent cells) in Medium T at 2x10⁶ cells/ml. (This is a suggested concentration. Lower numbers can and are routinely used. The critical point is to be able to collect 2,000-10,000 Target cells for analysis.) If targets are to be pulsed with sensitizers, e.g., peptides, the latter should be added at this stage. (If peptide solubility requires use of an organic cosolvent, the latter should not exceed 0.3% (v/v) and a vehicle control tube/well should be included.) Incubate at 37°C for 0.25-1.0 hour. Optimal time should be determined for individual cell types (and sensitizers). Please note: for loading of PBLs, 1:1000 dilution of TFL4 in PBS for 15' at 37 °C is recommended. If sensitizers are to be used with PBLs, the recommendation is to add TFL4 for the final 15' of sensitizer exposure. - 2. During this time, prepare Effector cells (see below). - Wash Target cells 2 times with at least à 10-fold excess volume of physiologic buffer/medium per wash. - Resuspend labeled Target cells at 1x10⁶ cells/ml in Wash Buffer. (Depending on the experimental design, lower numbers of Target cells may used.) - 5. Dispense 100 μl of Target cell suspension to each assay well or tube. #### Preparation of Effector cells 1. Prepare Effector cells at the appropriate concentration in Wash Buffer. For example, for a final Effector to Target ratio of 5:1, suspend Effector cells at 5x10⁶ cells/ml. ## Coincubation of Target and Effector cells - Add 100 µl of Effector cell suspension to each well (or tube) containing Target cells except at least two wells, and add 100 ul of Effector cell suspension to at least two wells which do not contain Target cells. - Add 100 µl of Wash Buffer to wells containing only Targets and only Effectors to bring all samples to a final volume of 200 - Centrifuge all samples, carefully remove medium, and resuspend cell pellets in either 75µl Substrate from Vial CS or Wash Buffer for controls (absence of Substrate (for Tubes A and C below)). For ADCC antibodies can be added at this time. - Immediately after resuspension, pellet cells by brief centrifugation (Once the centrifuga reaches the speed normally used for cells, hold for 30 seconds and then stop the instrument.). - Incubate at 37°C for the desired time points. Since this assay detects dying cells rather than cells with irreversibly damaged plasma membranes, incubation times for a given cell system should be significantly shorter than with other methodologies. For single point assays, the suggested coincubation time is 1 hour (enduser times range between 30 minutes and 2 hours). Substantially longer times are not recommended. - Wash each sample with 200 µl Wash Buffer . - Resuspend each sample in Wash Buffer, transfer to flow cytometry tubes or leave in plates if a plate reader is to be used, and analyze by flow cytometry. # **Summary of samples:** - A. Target cells (=Target cells TFL4) - Target cells + Substrate from Vial CS - C. Effector cells - **D.** Effector cells + Substrate from Vial CS - **E.** Target cells + Effector cells + Substrate from Vial CS (multiple samples) Flow Cytometry: the following channels are recommended: APC for TFL4 and FITC for CS. For instruments with other filter sets, please use settings consistent with the following excitation and emission peaks: ``` TFL4 \lambda_{ex}: 63\overline{3} nm, \lambda_{em}: 657 nm CS \lambda_{ex}: 488 nm, \lambda_{em}: 520 nm ``` For flow cytometers equipped with both Ar ion (488 nm) and red He-Ne (633 nm) lasers: - 1. Use samples **A** and **D** to initially set the APC and FITC channels, resp.: place the peak for cells from sample **A** near 10³ in the APC channel and the peak from sample **D** at ca. 10^1 in the FITC channel. Cells in sample B should then be at ca. 10^3 in the APC and 101 in the FITC channels. (Note: Healthy (>95% viable by Trypan Blue) TFL4-labeled Target cells should appear as a single population. If not, first try decreasing labeling time to 15 minutes. If more than one population still exists, decrease TFL4 concentration.) - Run remaining samples. 2,000-10,000 Target cells per sample should be collected for analysis. - References for OncoImmunin, Inc.'s cytotoxicity kits 1. B.Z. Packard, W.G. Telford, A. Komoriya, and P.A. Henkart. Granzyme B activity in target cells detects attack by cytotoxic lymphocytes. **J. Immunol.** 179:3812- - 3820 (2007). A. Kinter, J. McNally, L. Riggin, R. Jackson, G. Roby, and A.S. Fauci. Suppression of HIV-specific T cell activity by lymph node CD25⁺ regulatory T cells from HIVinfected individuals. **PNAS** *104*:3390-3395 (2007). - T. Tarasenko, H.K. Kole, A.W. Chi, M.M. Mentink-Kane, T.A. Wynn, and S. Bolland. T cell-specific deletion of the inositol phosphatase SHIP reveals its role in regulating Th1/Th2 and cytotoxic responses. PNAS 104(27):11382-11387 (2007). - M. Carlsten, N.K. Björkström, H. Norell, et al. DNAX Accessory Molecule-1 mediated recognition of freshly isolated ovarian carcinoma by resting Natural Killer cells. Cancer Research 67: 1317-1325 (2007). A.L. Kinter, R. Horak, M. Sion, et al. CD25⁺ regulatory T Cells isolated from HIV-infected individuals suppress the cytolytic and nonlytic antiviral activity of HIV-specific CD8+ T Cells in vitro. AIDS Research and Human Retroviruses 23:438-450 (2007). R. Chiarle, C. Martinengo, C. Mastini, C. Ambrogio, V. D'Escamard, G. Forni, and G. Inghirami. The anaplastic lymphoma kinase is an effective oncoantigen for lymphoma vaccination. Nat. Med. 14:676-80 (2008). - A. Singh, H. Nie, B. Ghosn, H. Qin, L.H. Kwak, and K. Roy. Efficient modulation of T-cell response by dual-mode, single-carrier delivery of cytokine-targeted siRNA and DNA vaccine to antigen-presenting cells. Mol. Ther. 16:2011-2021 (2008). S.A. Migueles, C.M Osborne, C. Royce et al. Lytic granule loading of CD8+ T cells is required for HIV-infected cell elimination associated with immune control. Immunity 29:1009-21. # **Sample Flow Cytometry Data** All cell lines were purchased from the ATCC. Target cells (Jurkat) were incubated in 75 μ l Caspase Substrate with or without Effectors (NK-92) at a 5:1 Effector:Target ratio for the indicated times. Quadrants **R1** (upper left of each panel) represent nonapoptotic target cells while quadrants **R2** (upper right) represent apoptotic, Substrate-positive target cells. Effector cells occupy the lower 2 quadrants in Effector + Target samples. The percent nonapoptotic and apoptotic target cells (inset % value) is calculated as **R1**/(**R1+R2**) or **R2**/(**R1+R2**), respectively. Target cells (Jurkat, K562, or MDA-MB-468) were incubated with or without Effectors (NK-92) at a 5:1 Effector: Target ratio for 1 hour at 37°C with the Caspase Substrate. Quadrants **R1** (upper left of each panel) represent nonapoptotic target cells while quadrants **R2** (upper right) represent apoptotic, Substrate-positive target cells. Effector cells occupy the lower 2 quadrants. The percent nonapoptotic and apoptotic target cells (inset % value) is calculated as **R1**/(**R1+R2**) or **R2**/(**R1+R2**), respectively.